Seismic Evidence for Subduction-Transported Water in the Lower Mantle

نویسندگان

  • Jesse F. Lawrence
  • Michael E. Wysession
چکیده

We use seismic attenuation tomography to identify a region at the top of the lower mantle that displays very high attenuation consistent with an elevated water content. Tomography inversions with >80,000 differential travel-time and attenuation measurements yield 3D whole-mantle models of shear velocity (VS) and shear quality factor (Q ). The global attenuation pattern is dominated by the location of subducting lithosphere. The lowest Q anomaly in the whole mantle is observed at the top of the lower mantle (660–1400 km depth) beneath eastern Asia. The anomaly occupies a large region overlying the high-Q sheet-like features interpreted as subducted oceanic lithosphere. Seismic velocities decrease only slightly in this region, suggesting that water content best explains the anomaly. The subducting of Pacific oceanic lithosphere beneath eastern Asia likely remains cold enough to transport stable dense hydrous mineral phase D well into the lower mantle. We propose that the eventual decomposition of phase D due to increased temperature or pressure within the lower mantle floods the mantle with water, yielding a large low-Q anomaly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The structure and dynamics of the mantle wedge

A large amount of water is brought into the Earth’s mantle at subduction zones. Upon subduction, water is released from the subducting slab in a series of metamorphic reactions. The resulting flux into the mantle wedge modifies its chemical and physical properties by mineral hydration with associated weakening, flux melting and changes in the dynamics and thermal structure of subduction zones. ...

متن کامل

Mid-mantle seismic anisotropy beneath southwestern Pacific subduction systems and implications for mid-mantle deformation

Observations of seismic anisotropy can offer relatively direct constraints on patterns of mantle deformation, but most studies have focused on the upper mantle. While much of the lower mantle is thought to be isotropic, several recent studies have found evidence for anisotropy in the transition zone and uppermost lower mantle (the mid-mantle), particularly in the vicinity of subducting slabs. H...

متن کامل

Possible emplacement of crustal rocks into the forearc mantle of the Cascadia Subduction Zone

[1] Seismic reflection profiles shot across the Cascadia forearc show that a 5–15 km thick band of reflections, previously interpreted as a lower crustal shear zone above the subducting Juan de Fuca plate, extends into the upper mantle of the North American plate, reaching depths of at least 50 km. In the extreme western corner of the mantle wedge, these reflectors occur in rocks with P wave ve...

متن کامل

Earthquakes and plastic deformation of anhydrous slab mantle in double Wadati-Benioff zones

[1] Double Wadati‐Benioff seismic zones (DSZ) with two parallel planes of seismicity separated by 15–30 km are a global feature of subduction zones in the 50–200 km depth range. Upper plane seismicity is generally attributed to dehydration of the oceanic crust but the origin of the lower seismicity plane is debated. Serpentine or hydrous‐phase dehydration embrittlement is a commonly advocated m...

متن کامل

Upper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine

Seismic anisotropy in the oceanic lithosphere results from flow-induced crystallographic preferred orientation of dry olivine during lithosphere creation. Recent experiments, however, showed that high water activity changes the flow mechanisms of olivine and hence the crystallographic preferred orientation, better explaining the seismic anisotropy in the mantle wedge above subduction zones. Whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007